
TDDC86 Compiler Optimizations and Code Generation Page 1 C. Kessler, IDA, Linköpings Universitet, 2009.

CODE GENERATION FOR IRREGULAR ARCHITECTURES
� DSP Processor Features� Constraints by Irregular Register Sets� Memory layout for multi-banked memory� Exploiting Address Generation Units� Exploiting SIMD Instructions� Energy Optimization

TDDC86 Compiler Optimizations and Code Generation Page 2 C. Kessler, IDA, Linköpings Universitet, 2009.

Domain-specific processors

programmability

efficiency (MIPS/Watt)

flexibility

µ

...
NPUs

DSPs
 Cs

GPPs

ASICs

TDDC86 Compiler Optimizations and Code Generation Page 3 C. Kessler, IDA, Linköpings Universitet, 2009.

Digital Signal Processors (DSPs)

� trend towards more “general-purpose” DSPs: programmable� optimized for high throughput for special applications� used as workhorse in high-performance embedded systems� execution time/throughput, code size, power consumption do matter� typical features:

+ clustered VLIW architectures

+ non-homogeneous register sets

+ dual memory banks

+ address generation units

+ SIMD parallelism on subwords

+ MAC instruction (multiply-accumulate)

TDDC86 Compiler Optimizations and Code Generation Page 4 C. Kessler, IDA, Linköpings Universitet, 2009.

Literature

Books:� Peter Marwedel, Gert Goossens (Eds.):

Code Generation for Embedded Processors.Kluwer, 1995.� Rainer Leupers:

Retargetable Code Generation for Digital Signal Processors. Kluwer, 1997.

focus on retargetability / frameworks� Rainer Leupers:

Code Optimization Techniques for Embedded Processors.Kluwer, 2000.

focus on optimizations

TDDC86 Compiler Optimizations and Code Generation Page 5 C. Kessler, IDA, Linköpings Universitet, 2009.

Demands on code quality

(Critical) code for DSPs was traditionally written in assembler.

More complex embedded software, shorter time-to-market! assembler programming is no longer feasible. The lingua franca is C(++).

Compilers for embedded processors must generate extremely efficient code:� code size

system-on-chip

on-chip RAM / ROM� performance

real-time constraints� power / energy consumption

heat dissipation

battery lifetime

TDDC86 Compiler Optimizations and Code Generation Page 6 C. Kessler, IDA, Linköpings Universitet, 2009.

Compilation problems in embedded processors

Not compiler-friendly:� designed for efficiency, not for ease of programming� irregular data paths� special purpose registers� constrained parallelism� advanced addressing modes� special instructions e.g. MAC (multiply-accumulate)

But compilers traditionally preferred regular architectures ...

TDDC86 Compiler Optimizations and Code Generation Page 7 C. Kessler, IDA, Linköpings Universitet, 2009.

More phase ordering problems: Code generation for DSPs

Clustered VLIW architectures, e.g. TI C6201:

.L2.S2.M2.D2.L1 .S1 .D1

Register file A (A0-A15) Register file B (B0-B15)

.M1

2X 1X

Data cache/Data memory

Program cache/Program memory

simultaneously e.g.

load on A
load on B
move A$B� mapping instructions to clusters

needs information about (concurrent) need of resources� instruction scheduling

needs information about residence of operands and instructions

Heuristic [Leupers’00] iterative optimization with simulated annealing

TDDC86 Compiler Optimizations and Code Generation Page 8 C. Kessler, IDA, Linköpings Universitet, 2009.

More phase ordering problems: Code generation for DSPs

Example: Hitachi SH3-DSP

A1YX 010010 MAYX

muladd/
substore store

load/load/

M1A1YX 0001 110 MAYX

muladd/
substore store

load/load/

M

add + muladd + NOP

data pathsdata paths

data paths data paths

Residence constraints on concurrent execution (load + mul, add + mul, ...)

Instruction scheduling and register allocation are not separable!

Phase-decoupled standard methods generate code of poor quality.

TDDC86 Compiler Optimizations and Code Generation Page 9 C. Kessler, IDA, Linköpings Universitet, 2009.

Conflicts in instruction selection for MAC instructions

Instruction selection for DAGs – NP-complete

tree-pattern-matching algorithm (dynamic programming) works fine

as a heuristic for most regular processor architectures

Problem: Common subexpressions could be part
of multiple possibilities for covers by complex in-
structions — at most one can be realized.

MUL

ADD

ADD

MAC?

MAC?

Constraint-logic programming [Bashford’99]

TDDC86 Compiler Optimizations and Code Generation Page 10 C. Kessler, IDA, Linköpings Universitet, 2009.

Memory layout for dual-banked memory

Some VLIW architectures have multiple (typically 2) memory banks

to duplicate the memory–register bandwidth

X-data Y-data

load/store load/store
unit 1 unit 2

interconnection buses

Float register fileInteger register file

unit unit unit unit.....

memory bank 1 memory bank 2

byte 1byte 0 2 3 4 5 6 7
8 9 10 11 12 13 14 15

Bank 0 Bank 1 Bank 2 Bank 3

...

! data layout problem: how to exploit parallel loads/stores?

TDDC86 Compiler Optimizations and Code Generation Page 11 C. Kessler, IDA, Linköpings Universitet, 2009.

Memory layout for dual-banked memory (2)

naive method: duplicate all data over all banks� load always from closest bank� stores must be duplicated as well for consistency� if direct moves are possible: how to schedule them?� space requirements...

optimal partitioning is NP-complete [Garey/Johnsson’79]

heuristic Saghir/Chow/Lee ASPLOS-VII 1996:

“Exploiting dual data-memory banks in digital signal processors”

2 phases:

(1) build bank interference graph

(2) partition bank interference graph heuristically

TDDC86 Compiler Optimizations and Code Generation Page 12 C. Kessler, IDA, Linköpings Universitet, 2009.

Memory layout for dual-banked memory (3)

Phase 1: construct bank interference graph� start with empty bank interference graph� extension of greedy list scheduling:

at each zero-indegree set z

... place instructions from z into LIW as long as units available ...

if load instruction v2 z could be scheduled

but one Load/Store unit was already assigned some u2 z

where u and v access different variables var(u), var(v)

! requires alias analysis!

then add edge f var(u); var(v) g to bank interference graph

weighted e.g. by nesting depth

TDDC86 Compiler Optimizations and Code Generation Page 13 C. Kessler, IDA, Linköpings Universitet, 2009.

Example: Constructing the bank interference graph

D[i] = A[j] + B[k]

C[i] = B[j] / C[k]

for (i=0; i<10; i++) C[:]

D[:]

A[:]
B[i] = B[j] * D[k]

B[:]

C[1] = A[j] − C[k]

A[7] = C[j] + D[k]

 C[i] = A[i] + D[i]
...

...

1 1

1

1 1

10

TDDC86 Compiler Optimizations and Code Generation Page 14 C. Kessler, IDA, Linköpings Universitet, 2009.

Memory layout for dual-banked memory (3)

Phase 2: partition the bank interference graph

greedy heuristic – here for 2 banks� start with partition P= fV1 =V;V2 = /0g, i.e., all nodes in bank 1� cost of a partition P:
#banks

∑
i=1

∑fu;vg edge; u2Vi; v2Vi

w(fu;vg)� repeat

move a node v from V1 to V2

that yields the maximum cost reduction

until cost cannot be decreased further

+ 13..43% improvement in practice

– requires alias analysis, especially for array elements

– assumption of a large, general-purpose register file is unrealistic

TDDC86 Compiler Optimizations and Code Generation Page 15 C. Kessler, IDA, Linköpings Universitet, 2009.

Example (cont.): Partitioning the bank interference graph

C[:]

D[:]

A[:]

B[:]

1 1

1
10

1 1

C[i] = B[j] / C[k]

for (i=0; i<10; i++)

B[i] = B[j] * D[k]

C[1] = A[j] − C[k]

A[7] = C[j] + D[k]

 C[i] = A[i] + D[i]

D[i] = A[j] + B[k]

...

D[:]

C[:]

A[:]

B[:]

1

...

1

Cost: 15

A[:]

B[:]

D[:]

C[:]

1 1

Cost: 2

Bank 1 Bank 2 Bank 1 Bank 2

1

Bank 2

greedy choice: C[:]greedy choice: D[:]

C[:]

D[:]

A[:]

Bank 1

1 1

1

1 1

10

B[:]

Cost: 3

TDDC86 Compiler Optimizations and Code Generation Page 16 C. Kessler, IDA, Linköpings Universitet, 2009.

Memory layout for dual-banked memory (4)

Extension: [Sudarsanam/Malik ICCAD’95, TODAES’2000]

Integration of bank allocation and register allocation:� common interference graph with different kinds of edges� minimum-cost labelling of the graph: simulated annealing heuristic

TDDC86 Compiler Optimizations and Code Generation Page 17 C. Kessler, IDA, Linköpings Universitet, 2009.

Address generation units in DSPs (1)

Image source: www.address-code-optimization.org

TDDC86 Compiler Optimizations and Code Generation Page 18 C. Kessler, IDA, Linköpings Universitet, 2009.

Address generation units in DSPs (2)

Address registers used for autoincrement / -decrement addressing of� vector elements (small constant stride through array)

— largest potential� scalars on the stack or in global .data segment

— to optimize scalar code if address register left

If the next address accessed differs from the previous one only by a small
constant, the AGU can be used in parallel to the ALU datapaths! more throughput, as ALU is not blocked by address calculations

Examples: TI C2x/5x, Motorola 56000, ADSP-210x, ...

Autoincrement load/store instructions exist on almost all processors

(sometimes called pop/push)

TDDC86 Compiler Optimizations and Code Generation Page 19 C. Kessler, IDA, Linköpings Universitet, 2009.

Single Offset Assignment problem (SOA)

Generation of optimal address code for computations on stack-allocated sca-
lar variables, using 1 address register with autoincrement/decrement� Given: Access sequence S (linear schedule)� Compute: Memory layout of the variables on the stack

that minimizes the number of extra address instructions required

Image source: www.address-code-optimization.org

TDDC86 Compiler Optimizations and Code Generation Page 20 C. Kessler, IDA, Linköpings Universitet, 2009.

Single Offset Assignment problem (SOA)

(one single address register + one constant offset value r)

Given:� V = fv1; :::;vng local variables to be placed in the stack,� S= hs1; :::;sli access sequence, si 2V, 1 � i � l

(known, as this is done after scheduling),

find a bijective offset mapping M : V !f0; :::;n�1g (stack addresses)

such that Cost(M) = 1 + l�1
∑
i=1

zi is minimized,

where zi = 1 if jM(si+1)�M(si)j> r, and 0 otherwise.

(Usually, this offset for autoincrement/decrement is r = 1.)

Optimal solution: NP-complete!

TDDC86 Compiler Optimizations and Code Generation Page 21 C. Kessler, IDA, Linköpings Universitet, 2009.

Algorithms for SOA

O(n3) heuristic [Bartley’92]

Branch-and-bound algorithm [Liao et al. PLDI’95]� build a variable affinity graph:

For each pair (si;si+1) in S increase weight of edge (si;si+1) by 1� find a maximum-weight Hamiltonian path in the affinity graph

by Branch&Bound, using a modified Kruskal MST algorithm

Example:

Heuristic [Leupers’00]: genetic algorithm.

TDDC86 Compiler Optimizations and Code Generation Page 22 C. Kessler, IDA, Linköpings Universitet, 2009.

General offset assignment (GOA) problem

GOA: Extension of SOA for multiple (K > 1) address registers:

Given:� variable (index) set V = f1; :::;ng,� access sequence S= hvs1; :::;vsmi 2Vm; where n� m, and� range of possible autoinc/-decr. offsets,

find a K-coloring of the elements in the address sequence S

= partitioning of S into K sub-access sequences Sk, k= 1:::K,

each color defines a sub-access-stream Sk = hvsk(1); vsk(2); :::; vsk(mk)i,
for each Sk, all elements appear in the same relative order as in S

and find a data layout π : V !V in memory

that minimize overall cost CK = K
∑

k=1

n
∑
i=1

n
∑
j=1

ci; j � tSk
π(i);π(j)

where ci; j 2 f0;1g = cost for changing address register from i 2V to j 2V

and tS
i; j = number of times where address j occurs in Sdirectly after i.

TDDC86 Compiler Optimizations and Code Generation Page 23 C. Kessler, IDA, Linköpings Universitet, 2009.

General offset assignment (GOA) problem: Example

Image source: www.address-code-optimization.org

TDDC86 Compiler Optimizations and Code Generation Page 24 C. Kessler, IDA, Linköpings Universitet, 2009.

Exploiting SIMD instructions

1616+

1631 015 1631 015

1631 015

+ADD2:

ADD2 performs two 16-bit integer additions on the same functional unit in
one clock cycle.

Operands must reside in lower and upper 16 bits of the same registers.

Most other instructions (Load, Store, Copy, ...) work on 2x16bit pairs in the
same way as for 32bit words, thus same opcode.� Requirement for load/store of 2x16bit, 4x8bit etc.:

Consecutive layout in memory, possibly alignment constraints

Remark: SIMD data types such as 2x16bit pairs, 4x8bit quadruples etc. are sometimes referred to as ”vectors”

TDDC86 Compiler Optimizations and Code Generation Page 25 C. Kessler, IDA, Linköpings Universitet, 2009.

Instruction Selection for SIMD Instructions

Previously:

Pattern matching rule reg: ADDI (reg, reg)

Now add 2 new nonterminals reg hi, reg lo
(denote upper/lower register halves)

and 2 new rules for ADD2:

reg hi: ADD2 (reg hi, reg hi)
reg lo: ADD2 (reg lo, reg lo)

ADD16 ADD16

reg_hi

ADD2

reg_lo

reg_lo

reg_hi

Beware of creating artificial dependence cycles when covering nodes with
complex patterns!

(see lecture on Instruction Selection)

TDDC86 Compiler Optimizations and Code Generation Page 26 C. Kessler, IDA, Linköpings Universitet, 2009.

Preparing for Selecting SIMD Instructions

May require loop unrolling to find candidates for ADD2 matching:

void vector add (short a[], b[], c[], unsigned int N)f

unsigned int i;
for (i = 0; i < N; i+= 2) f

a[i] = b[i] + c[i];
a[i +1] = b[i +1] + c[i +1];gg

ADD16 ADD16

reg_hi

ADD2

reg_lo

reg_lo

reg_hi

TDDC86 Compiler Optimizations and Code Generation Page 27 C. Kessler, IDA, Linköpings Universitet, 2009.

Example (cont.) — Effect of code for 1 loop iteration

16+

0

ADD2:

b[i]
b[i+1]

a[i]
a[i+1]

c[i]
c[i+1]

32bit Load

32bit Load

32bit Store

32bit register

32bit register

MEMORY

+16

31 16 15 0 31 16 15 0

31 16 15

TDDC86 Compiler Optimizations and Code Generation Page 28 C. Kessler, IDA, Linköpings Universitet, 2009.

Energy optimization (1)

Hardware-support for energy saving:� Voltage scaling:

reduce voltage and frequency for non-critical program regions� Clock gating:

switch off parts of a processor (e.g. float unit) if not used for a while� Pipeline gating

switch off speculation ! reduces unit utilization� Memory accesses

reduce spill code by space-aware code selection / scheduling

TDDC86 Compiler Optimizations and Code Generation Page 29 C. Kessler, IDA, Linköpings Universitet, 2009.

Energy optimization (2)

Other factors that can be exploited by software:� Switching activities on buses at the bit level

CMOS circuits dissipate power if a gate output changes 0!1 or 1!0

Number of ones (“weight”) on buses may also influence power� Instruction decoding / execution: varying base costs� Energy consumption =
TR
0

power(t) dt

but shorter time may not necessarily yield less energy

TDDC86 Compiler Optimizations and Code Generation Page 30 C. Kessler, IDA, Linköpings Universitet, 2009.

Energy optimization (3)

Example: Register pipelining for ARM7 Thumb

[Steinke’01, ’02]

C code:

int a[1000];
c = a;
for (i=1; i<100; i++)
{ b += *c;
b += *(c+7);
c += 1;

}

optimized for time:

...
Loop:
LDR r3, [r2,#0]
ADD r3, r0, r3
MOV r0,#28
LDR r0, [r2,r0]
ADD r0, r3, r0
ADD r2, r2, #4
ADD r1, r1, #1
CMP r1, #100
BLT Loop

2096cc, 19.92µWs

optimized for energy:

...
Loop:
ADD r3, r0, r2
MOV r0, #28
MOV r2, r12
MOV r12, r11
MOV r11, r10
MOV r10, r9
MOV r9, r8
MOV r8, r1
LDR r1, [r4,r0]
ADD r0, r3, r1
ADD r4, r4, #4
ADD r5, r5, #1
CMP r5, #100
BLT Loop

2231cc, 16.47µWs

TDDC86 Compiler Optimizations and Code Generation Page 31 C. Kessler, IDA, Linköpings Universitet, 2009.

Energy optimization (4)

Simulation-based power models� input: detailed description of the target processor� simulate the architecture cycle by cycle with a given program� Ex.: SimplePower [Ye et al. DAC 2000], Wattch [Brooks et al. ISCA-2000]

Measurement-based models� know the set of most influential factors for power consumption

(for a family of processors)� assume power(t) = linear combination of these, weighted by coefficients

coefficients found by measuring current drawn for simple test sequences

with an ampèremeter, by regression analysis� Examples: [Lee et al. LCTES’01], [Steinke et al. PATMOS’01]

TDDC86 Compiler Optimizations and Code Generation Page 32 C. Kessler, IDA, Linköpings Universitet, 2009.

Summary – Challenges for DSP code optimization

� Instruction-Level Parallelism, Scheduling, Data layout

SIMD instructions, MAC, VLIW, clustered VLIW

Address code generation and stack data layout

Banked memory� Power consumption

power models

instruction selection and scheduling for low-power

minimize memory accesses – register allocation� Code size reduction

selective function inlining / tail merging, selective loop unrolling

instruction selection (compact instruction formats)� Retargetability — Generate or parameterize optimizer from target description

