
Fixing Races for Fun and Profit: How to abuse atime

Nikita Borisov Rob Johnson Naveen Sastry David Wagner
University of California, Berkeley

{nikitab, rtjohnso, nks, daw}@cs.berkeley.edu

Abstract

Dean and Hu proposed a probabilistic countermeasure
to the classic access(2)/open(2) TOCTTOU race condi-
tion in privileged Unix programs [4]. In this paper, we
describe an attack that succeeds with very high proba-
bility against their countermeasure. We then consider a
stronger randomized variant of their defense and show
that it, too, is broken. We conclude that access(2) must
never be used in privileged Unix programs. The tools
we develop can be used to attack other filesystem races,
underscoring the importance of avoiding such races in
secure software.

1 Introduction

At USENIX Security 2004, Dean and Hu described a
probabilistic scheme for safely using the access(2) sys-
tem call in Unix systems [4]. The access(2) system call
is known to be vulnerable to Time Of Check To Time Of
Use (TOCTTOU) race attacks, and for this reason it has
fallen into almost complete disuse. This leaves Unix pro-
grammers without a portable, secure, and efficient way
of checking a file’s permissions before opening it. Thus
Dean and Hu’s scheme would be a boon to systems pro-
grammers if it were secure. In this paper, we show that it
is not.

Dean and Hu’s scheme, which we call k-Race, thwarts
attackers by forcing them to win numerous races to suc-
cessfully attack the system. The strength of their scheme
rests on the assumption that an attacker has a low prob-
ability of winning each race, and hence an exponentially
low probability of winning all the races. Dean and Hu
identify two difficulties with winning repeated races: en-
suring that the attacker gets scheduled in time to win
each race, and staying synchronized with the victim over
many successive races. We develop three tools which
help us overcome these difficulties: filesystem mazes,
which greatly slow down filesystem operations of a vic-

OS Attacker Wins / Trials
FreeBSD 4.10-PR2 92/100
Linux 2.6.8 98/100
Solaris 9 100/100

Table 1: Success rates of our attack against Dean
and Hu’s defense using the recommended security pa-
rameter, k = 7, on several platforms.

tim, system call synchronizers, and system call distin-
guishers. Using these tools, we can win races with ex-
tremely high probability, violating Dean and Hu’s as-
sumption. We use these tools to build an attack that
reliably breaks the k-Race algorithm using the recom-
mended parameter, and works on a variety of operating
systems. As shown in Table 1, our attack defeats the k-
Race algorithm over 90% of the time on every operating
system we tested.

Our attack remains successful even when the security
parameter is much larger than recommended by Dean
and Hu. We also consider a randomized extension of
the k-Race algorithm that makes non-deterministic se-
quences of calls to access(2), open(2), and fstat(2), and
show that it can be defeated as well. The tools we de-
velop for this attack are applicable to other Unix filesys-
tem race vulnerabilities, such as the stat(2)/open(2) race
common in insecure temporary file creation. We have
ported our attack code to several Unix variants and it suc-
ceeds on all of them. Our technique exploits the perfor-
mance disparity between disks and CPUs, so as this gap
grows our attack will become more powerful. This re-
futes Dean and Hu’s claim that as CPU speeds increase in
the future, the risk to systems using their defense would
decline.

Recent research in automated code auditing has dis-
covered over 40 TOCTTOU races in the Red Hat Linux
distribution [10]. This result, combined with our tech-

niques for exploiting race conditions, shows that races
are a prevalent and serious threat to system security.

In short, we show that the k-Race algorithm is inse-
cure, that Unix filesystem races are easy to win, and that
they will continue to be easy to win for the foreseeable
future. The rest of this paper is organized as follows. We
begin by reviewing setuid programs in Unix and the ac-
cess(2)/open(2) race. Section 3 presents Dean and Hu’s
countermeasure for preventing access(2)/open(2) races.
We then describe a simple attack on Dean and Hu’s
scheme in Section 4, and enhance this attack in Sec-
tion 5. Sections 6 and 7 describe a randomized gener-
alization of the k-Race algorithm, and an attack on that
scheme. Section 8 considers other defenses against the
access(2)/open(2) race. We consider related work in Sec-
tion 9, and summarize our contributions in Section 10.

2 The access(2)/open(2) race

The access(2) system call was introduced to address a
problem with setuid-root programs. The original Unix
authors invented the setuid mechanism to support con-
trolled sharing in Unix environments. A setuid program
runs with the permissions of the executable’s owner in-
stead of the invoker, enabling it to use private data files
that the program’s invoker cannot access. As a special
case, a setuid-root program can access any file on the
system, including the invoker’s personal files. This leads
to a classic confused deputy problem [6].

To see how the confused deputy problem arises, con-
sider a setuid-root printing program that prepares users’
files for printing and puts them onto the printing queue.1
The queue is not accessible to ordinary users, but the
setuid-root program can write to it. The program should
only let users print files that they themselves can access.
Unfortunately, since setuid-root programs have permis-
sion to read every file on the system, this implementation
does not have any easy way to determine whether the re-
quested input file is readable by the caller.

To solve this problem, Unix introduced the access(2)
system call. A setuid program can use the access(2) sys-
tem call to determine whether the invoker has the rights
needed to open a file. This solves the confused deputy
problem, but it also introduces a new security vulnera-
bility: Time Of Check To Time Of Use races [8]. The
vulnerability occurs because the return value from ac-
cess(2) tells us about the state of the filesystem at some
recent time in the past, but tells us nothing about what
the state will be when we next operate on the filesystem.

To illustrate the vulnerability, consider a typical setuid
program, which might call access(2) to check a file’s per-

1This example is inspired by an actual vulnerability in lpr
in Red Hat, see https://www.redhat.com/archives/
redhat-watch-list/1999-October/msg00012.html.

// Victim (installed setuid-root)
void main (int argc, char **argv)
{

int fd;
if (access(argv[1], R OK) != 0)
exit(1);

fd = open(argv[1], O RDONLY);
// Do something with fd...

}

Figure 1: A setuid-root program vulnerable to the ac-
cess(2)/open(2) TOCTTOU race attack. An attacker may
be able to change the filesystem between the calls to ac-
cess(2) and open(2).

missions and then call open(2) to actually open the file
if the check succeeds, as shown in Figure 1. Unfortu-
nately, this code idiom is insecure. A clever attacker can
attempt to modify the filesystem (e.g. by changing sym-
bolic links) between the access(2) and open(2) system
calls so that when the setuid program calls access(2), the
given filename points to a safe, accessible file, but when
the setuid program calls open(2), the filename points to
a protected file. Thus, even if a setuid program uses ac-
cess(2), an attacker can still trick it into opening files that
it should not.

Figure 1 shows a typical setuid-root program that is
vulnerable to the access(2)/open(2) race, and Figure 2
shows a simple attack program that can trick the vic-
tim into opening /etc/shadow, a file that only root
can read. The attack is very timing dependent: the at-
tack program only succeeds if it manages to interrupt the
victim program between its access(2) call and open(2)
call. When this happens, the access(2) call succeeds
because, at that time, the path activedir/lnk re-
solves to a user-accessible file, public file. Af-
ter the victim calls access(2), it gets interrupted, and
the victim changes the symbolic link activedir to
point to dir1. When the victim resumes, it calls
open(2) on activedir/lnk, which now resolves to
/etc/shadow. Since the victim is a setuid-root pro-
gram, the open(2) succeeds, but the victim believes that
it has opened a file accessible by the invoking user.

Notice that the attacker has a much better chance of
winning the race if dir0 is not currently in the buffer
cache. If that is the case, then the victim’s call to ac-
cess(2) will have to fetch the contents of dir0 from disk.
This I/O will put the victim to sleep, giving the attacker a
chance to run and switch the symbolic link activedir.
This observation is one of the key ideas behind our attack
on the k-Race defense.

// Attacker
void main (int argc, char **argv)
{

// Assumes directories and links:
// dir0/lnk -> public file
// dir1/lnk -> /etc/shadow
// activedir -> dir0

// Let the victim run
if (fork() == 0) {
system("victim activedir/lnk");
exit(0);

}
usleep(1); // yield CPU

// Switch where target points
unlink("activedir");
symlink("dir1", "activedir");

}

Figure 2: A program for exploiting access(2)/open(2)
races. A non-root attacker can use this program to ex-
ploit the setuid-root program shown in Figure 1.

3 The k-Race proposal

Dean and Hu noticed that, in practice, exploiting the ac-
cess(2) race condition can be quite difficult. Their exper-
iments showed that a naive attacker can only expect to
win a race with probability 10−3 on uniprocessor ma-
chines and 10−1 on multiprocessor machines. Based
on this evidence, Dean and Hu proposed a probabilistic
countermeasure to this race condition. By requiring the
attacker to win a large number of races, they intended to
make it practically impossible to successfully exploit the
access(2)/open(2) race.

An implementation of their defense is given in Fig-
ure 3. The k-Race algorithm essentially repeats the ac-
cess(2)/open(2) idiom k times. To ensure that the at-
tacker must win a race between every system call, the k-
Race algorithm uses fstat(2) to check that every open(2)
call resolves to the same file. To see how this works, con-
sider an attacker trying to defeat k-Race. After the victim
makes the first access(2) call, the attacker must switch
symlinks so that, when the victim calls open(2), the given
filename points to a protected file. After the first call to
open(2), the attacker has tricked the victim into opening
a secret file, but the k-Race algorithm forces the attacker
to continue racing with the victim as follows. The vic-
tim next performs another call to access(2). The attacker
must race to switch the symlink to point to a public file,
or this access(2) call will not succeed. Next, the victim
calls open(2) again and uses fstat(2) to verify that the re-

int dh_access_open(char *fname)
{
int fd, rept_fd;
int orig_ino, orig_dev;
struct stat buffer;

if (access(fname, R_OK) != 0)
return -1;

fd = open(fname, O_RDONLY);
if (fd < 0)

return -1;

// This is the strengthening.
// *First, get the original inode.
if (fstat(fd, &buffer) != 0)

goto error;
orig_inode = buffer.st_ino;
orig_device = buffer.st_dev;

// Now, repeat the race.
// File must be the same each time.
for (i=0; i < k; i++) {

if (access(fname, R_OK) != 0)
goto error;

rept_fd = open(fname, O_RDONLY);
if (rept_fd < 0)
goto error;

if (fstat(rept_fd, &buffer) != 0)
goto error;

if (close(rept_fd) != 0)
goto error;

if (orig_inode != buffer.st_ino)
goto error;

if (orig_device != buffer.st_dev)
goto error;

/* If generation numbers are
available, do a similar check
for buffer.st_gen. */

}

return fd;

error:
close(fd);
close(rept_fd);
return -1;

}

Figure 3: Dean and Hu’s k-Race algorithm [4]. An at-
tacker must win 2k + 1 races to defeat this algorithm.

sulting file descriptor is a handle on the same file as the
result of the first call to open(2). In order for this test
to succeed, the attacker must race to switch the symlinks
again to point to the private file. By making four system
calls, access(2), open(2), access(2), open(2), the victim
has forced the attacker to win three races.

In general, the k-Race algorithm allows the setuid-root
program to make k strengthening rounds of additional
calls to access(2) and open(2), forcing the attacker to win
a total of 2k+1 races. Dean and Hu reason that, since the
adversary must win all 2k +1 races, the security guaran-
tees scale exponentially with the number of rounds. If p
is the probability of winning one race, then the attacker
will defeat the k-Race defense with probability ≈ p2k+1.
Their measurements indicate that p ≤ 1.4 × 10−3 on
uniprocessor machines on a range of operating systems,
and p ≤ 0.12 on a multiprocessor Sun Solaris machine.
Dean and Hu suggest k = 7 as one reasonable parameter
setting, and they estimate that with this choice the prob-
ability of a successful attack should be below 10−15.

In their argument for the security of their scheme,
Dean and Hu consider a slightly modified attacker that
attempts to switch activedir back and forth between
dir0 and dir1 between each system call made by the
victim. They observe that this attack will fail for two
reasons. First, the attacker is extremely unlikely to win
any race if dir0 is in the filesystem cache. Moreover,
even if the attacker gets lucky and dir0 is out of cache
during the victim’s first call to open(2), the victim’s call
to open(2) will bring dir0 into the cache. In this case,
dir0 will be in the cache for the victim’s second call
to open(2), so the attacker will lose that race. Dean
and Hu’s experiments support this claim. Second, they
note that this attack requires that the attacker remain syn-
chronized with the victim. Dean and Hu added random
delays between each access(2) and open(2) call to foil
any attempts by the attacker to synchronize with the vic-
tim.

Although filesystem caching and synchronization are
real problems for an attacker, we show in the next section
that it is possible to modify the attack to overcome these
difficulties.

4 Basic Attack

As Dean and Hu observed, an attacker must overcome
two obstacles to successfully attack their scheme. First,
filesystem caching prevents the attacker from winning
multiple races. Second, the attacker must synchronize
with the victim. We deal with each problem in turn.

Avoiding the cache. The attack analyzed by Dean
and Hu succumbs to caching effects because it re-uses

for i = 1 to 2k + 1

wait for victim’s next system call
link activedir to diri

Figure 4: Our algorithm for defeating the k-Race algo-
rithm. The algorithm forces the victim to perform I/O,
and hence yield the CPU to the attacker, by switching
among a series of directories, dir0, . . ., dir15, all
of which are out of the filesystem cache. The attacker
detects the start of each of the victim’s system calls by
monitoring the access time of symbolic links in each di-
rectory.

dir0 and dir1. To avoid filesystem caching, we create
16 separate directories, dir0, . . ., dir15, and use each
directory exactly once. The even-numbered directories
dir0, dir2, . . ., dir14 all contain symbolic links to
a publicly accessible file. The odd-numbered directories,
dir1, dir3, . . ., dir15, contain symbolic links to the
protected file we are attacking, such as /etc/shadow.
Initially, the symbolic link activedir points to dir0.
After each of the victim’s system calls, the attacker
changes activedir to point to the next directory, as
shown in the pseudo-code in Figure 4.

Since the attacker uses each directory exactly once,
she has a much higher chance of winning all the races
against the victim. If the attack begins with none of the
directories in cache, then the victim will be forced to
sleep on I/O for each of its system calls, giving the at-
tacker time to update activedir to point to the next
directory.

This attack succeeds only when dir0, . . ., dir15 are
not in the operating system’s buffer cache. If the attacker
tries to run the attack immediately after creating these
directories, she will fail because they will all still be in
the cache. For the rest of this section, we assume the
attacker has some method to flush all these directories
from cache after creating them. Section 5 describes a
more powerful attack that eliminates this assumption.

Staying in sync. To stay synchronized with the victim,
the attacker must be able to detect when the victim has
begun each call to access(2) or open(2). The key in-
sight is that Unix updates the access time on any sym-
bolic links it traverses during name resolution.2 The at-
tacker can use this to monitor the filesystem operations
performed by the victim. The attacker simply needs to

2Some NFS configurations do not update link access times, but ev-
ery local filesystem we tested exhibited this behavior. Some kernels
support a noatime mount option that disables access time updates.
Access time polling is not critical to our attack, though. The system
call distinguishers we develop in Section 7 can be used instead of ac-
cess time polling to synchronize with the basic k-Race algorithm.

dir0/iotrap/lnk
symlink
−−−−−→ public file

dir0/sentry
symlink
−−−−−→ dir0/iotrap

dir1/iotrap/lnk
symlink
−−−−−→ /etc/shadow

dir1/sentry
symlink
−−−−−→ dir1/iotrap

dir2/iotrap/lnk
symlink
−−−−−→ public file

dir2/sentry
symlink
−−−−−→ dir2/iotrap

...
dir15/iotrap/lnk

symlink
−−−−−→ /etc/shadow

dir15/sentry
symlink
−−−−−→ dir15/iotrap

Figure 5: The directory structure used in our basic attack
on the k-Race algorithm. The attacker synchronizes with
the victim by polling the access time of diri/sentry.
The attacker must first flush all the iotrap directories
from the filesystem cache so that the victim will sleep on
I/O when it traverses them. The attacker creates a sym-
bolic link activedir pointing to dir0 and runs the
victim with arguement activedir/sentry/lnk.

poll the access time of a symbolic link in the path it
passes to the victim. When the access time of that link
changes, the victim must have begun a call to access(2)
or open(2).

Unfortunately, there is a small hitch with this simple
approach. In Unix, the access time is recorded only to a
1-second granularity. Consequently, the attacker cannot
poll the access time of activedir because, every time
she updates activedir to point to a new directory, she
will change its access time to the current second, and
hence will not be able to detect further accesses for up to
a second. By then, the race will be over. Moreover, the
attacker cannot poll the access time on dir7/lnk since
this would pull dir7 into the filesystem cache. This
makes it a challenge to stay synchronized with the vic-
tim.

This hurdle can be surmounted with an appropriate
re-arrangement of the directory structure. See Figure 5
for the directory structure we use to enable polling with-
out disturbing the filesystem cache. Inside each direc-
tory, diri, we create another subdirectory iotrap and
a symbolic link sentry pointing to iotrap. We then
create the final link, lnk, that points to the public or pro-
tected file inside diri/iotrap. The attacker gives the
victim the filename activedir/sentry/lnk, and
polls the access time of activedir/sentry.

Summary.

1. The attacker creates 16 directories as shown in Fig-
ure 5 and a symbolic link activedir to dir0.

2. She forces the cache entries for these directories out
of memory.

3. The attacker then executes the victim with argument
activedir/sentry/lnk.

(a) The victim calls access(2). The kernel be-
gins traversing this path and updates the ac-
cess time on dir0/sentry. After resolving
the symbolic link dir0/sentry, the vic-
tim is put to sleep while the operating system
loads the contents of dir0/iotrap. The
victim is now suspended in the middle of exe-
cuting the access(2) call.

(b) The attacker then gains the CPU, and polls
the access time on dir0/sentry. Upon
noticing that the access time has been updated,
the attacker knows that the victim has begun
its first access(2) call. The attacker switches
activedir to point to dir1 and begins
polling the access time on dir1/sentry.
The victim’s suspended access(2) call will not
be affected by this change to activedir be-
cause it has already traversed that part of the
path.

(c) Eventually, the victim’s I/O completes and it
finishes the access(2) call successfully.

When the victim calls open(2), the exact same se-
quence of events occurs: the kernel updates the access
time on dir1/sentry, the victim sleeps on I/O load-
ing dir1/iotrap, the attacker runs and notices the
updated access time on dir1/sentry, the attacker
switches activedir to point to dir2, and the victim
completes the open(2) successfully. This process repeats
for the victim’s remaining system calls, and the attacker
fools the victim into opening a protected file.

We implemented and tested this simple attack on sev-
eral different machines and found that the attack works
but is extremely sensitive to the target machine’s state.
For example, if the directories used in the attack happen
to be arranged close together on disk, then the attack will
often fail. In the next section, we develop a robust ver-
sion of this attack that succeeds with high probability on
all the machines we tested.

5 Full Attack

In this section, we increase the power and reliability of
our attack. The full attack is robust, succeeds with high
probability, can defeat the k-Race algorithm with over
100 rounds of strengthening, and doesn’t depend on the
attacker’s ability to perfectly flush the kernel filesystem
cache.

chain6/d/d/d/···/d/lnk

chain5/d/d/d/···/d/lnk

absolute link

relative link

sentry

chain4/d/d/d/···/d/lnk

absolute link

chain3/d/d/d/···/d/lnk

absolute link

chain2/d/d/d/···/d/lnk

absolute link

chain1/d/d/d/···/d/lnk

absolute link

chain0/d/d/d/···/d/lnk

absolute link

exit

absolute link

relative link to target file

Figure 6: Malicious directory structure to force the vic-
tim to sleep on I/O with extremely high probability and
hence enable the attacker to win a single race. We call
this structure a maze. We place an arrow between a sym-
bolic link and the target it references in a dotted box.

I/O amplification. We develop a tool called a maze to
slow down the I/O operations of the victim and hence
increase the chances that it will sleep. We start by cre-
ating a deep tree of nested directories. For example, in-
side dir0, the attacker creates the tree dir/dir/..
./dir/lnk instead of just dir/lnk. We call such
a deep nested directory structure a chain. The link
sentry should now point to dir/dir/.../dir,
and hence the attacker still runs the victim with the ar-
gument activedir/sentry/lnk. The victim will
be forced to sleep on I/O if at least one of the directories
in the chain is not currently in the buffer cache. Most
Unix systems impose a limit on the length of filename
paths, known as MAXPATHLEN, and this limits the depth
of chains created by the attacker. Common values for
MAXPATHLEN are 1024 and 4096 characters. Even with
these limits an attacker can create a directory tree over
500 directories deep, but the attacker can do even more.
MAXPATHLEN only limits the number of path ele-

ments that may be specified in a single system call, it
does not limit the number of directory elements that
may be traversed during a single name lookup. An at-
tacker can use symbolic links to connect two chains to-
gether as follows. First, the attacker creates a chain

procedure make maze(exit target, nchains, depth)
link exit to exit target
let top = current directory()
let target = top/exit
for i = 0 to nchains - 1

mkdir chaini
cd chaini
for j = 0 to depth

mkdir d
cd d

link lnk to target
let target = current directory()
cd top

link sentry to target

Figure 7: Algorithm to create the directory structure in
Figure 6.

chain0/dir/dir/.../dir/lnk, as above. Then
she creates another chain chain1/dir/dir/.../
dir/lnk, where the symbolic link at the bottom of this
chain points to chain0/dir/dir/.../dir. The
sentry link should now point to chain1/dir/dir/
.../dir. Now the attacker can invoke the victim, pass-
ing it the path activedir/sentry/lnk/lnk. If
each chain is N directories deep, then the victim will
need to traverse 2N directories to resolve this filename.

This technique can be extended to create a maze of up
to C chains, chainC − 1, chainC − 2, ..., chain0,
where each chain has at its bottom a symbolic link point-
ing to the bottom of the next chain. Figure 6 shows one
such maze of directories in its entirety. For simplicity,
we create a final link, exit, pointing to the target file, at
then end of the maze. We also use shorter names for the
directories in each chain, enabling us to create deeper
chains within the constraints of MAXPATHLEN. Pseu-
docode for constructing this maze is given in Figure 7.
With this structure, the attacker runs the victim with the
filename argument activedir/sentry/lnk/.../
lnk/lnk.

With C chains, each N directories deep, the victim
will have to traverse CN directories to resolve the given
filename. Unix systems usually impose a limit on the
total number of symbolic links that a single filename
lookup can traverse. Table 2 gives the MAXPATHLEN
and link limit for some common versions of Unix. For
example, Linux 2.6 limits filename lookups to 40 sym-
bolic links to prevent “arbitrarily long lookups.”3 This
limits the attacker to C < 40. Despite this limit, the
attacker can still force the victim to visit over 80, 000 di-

3Comment in fs/namei.c. Note that this is not the same limit
that is used to prevent symbolic link loops, since each symbolic link
lookup is within a different component of the path.

OS Filesystem MAXPATHLEN Link limit Dir. Size Max. Maze Max. Maze
(KB) Length Size (MB)

Linux 2.6.8 ext3 4096 40 4 81920 327

Solaris 9 ufs 1024 20 0.5 10240 5

FreeBSD 4.10-PR2 ufs 1024 32 0.5 16384 8

Table 2: MAXPATHLEN, the symbolic link limit, and other relevant parameters for three common Unix variants. Notice
that on Linux a single filename lookup can require traversing over 300MB of on-disk data.

rectories every time it calls access(2) or open(2). The
attacker is very likely to win the race if even just one of
these directories is not in the filesystem buffer cache.

Table 2 also shows the on-disk size of the largest maze
possible on each system. This figure gives us some in-
sight into why this attack is so successful. For example,
under Linux 2.6, an attacker can construct a filename that
requires loading over 300MB of data from disk, just to
resolve it. It is not surprising that when the victim calls
access(2) or open(2) on such a filename it is extremely
likely to sleep on I/O, giving the attacker plenty of time
to execute her attack.

Probabilistic cache flushing. Mazes are so powerful
that the attacker does not need to flush all the attack di-
rectories from cache. Instead, she can simply do “best
effort” flushing by engaging in filesystem activity of her
own. This activity will cause the buffer cache to flush
old items to make space for the new ones. For example,
running the command grep -r any string /usr
> /dev/null 2>&14 populates the buffer cache with
new items and will often flush some of the attack direc-
tories from the cache. With large mazes, the recursive
grep is very likely to flush at least one of the directories
in each maze, enabling the attacker to successfully break
the k-Race algorithm.

Summary. To defeat k-Race using k strengthening
rounds, the attacker creates M = 2k + 2 directories,
maze0, . . ., maze2k + 1, builds a maze in each of these
directories, and sets the symlink activemaze to ini-
tially point to maze0, as shown in Figure 8. The exit
links in the even-numbered mazes point to an attacker
accessible file, and the exit links in the odd-numbered
mazes point to the protected file under attack. After cre-
ating this directory setup, the attacker uses grep or some
other common Unix tool to flush some of the directories
in the mazes out of cache. She then executes the vic-
tim with the path activemaze/sentry/lnk/.../
lnk and advances activemaze to point to the next

4We have found this method more reliable if the grep command
searches the files on the same disk as the mazes. This is likely to be a
consequence of on-disk caching.

Maze 0

Maze 1

Maze 2

Maze 3

Maze 4

activemaze
relative link

relative link from exit to public file

relative link from exit to public file

relative link from exit to public file

relative link from exit to secret file

relative link from exit to secret file

Figure 8: Malicious directory structure to attack the k-
Race defense using the maze structure from Figure 6.
This construction is particularly effective when k is large.

maze directory whenever she detects that the access time
of activemaze/sentry has changed.

Experimental results. We implemented the k-Race al-
gorithm, including randomized delays between every
system call and between each round of strengthening.
We did not implement the extended k-Race defenses,
such as setting the victim scheduling priority to FIFO
or using mlock() to pin its pages in memory. We do
not believe these enhancements would prevent our attack
from succeeding.

We implemented and tested the attack on three Unix
variants: Linux 2.6.8, Solaris 9, and FreeBSD 4.10-PR2.
The Linux machine contains a 1.3GHz AMD Athlon pro-
cessor, 1GB of RAM,and a 160GB, 7200RPM IDE disk
with an 8MB on-disk cache and 9ms average seek time.
The FreeBSD machine contains a 1.4GHz Pentium IV,
512MB of RAM, and a 40GB, 7200RPM IDE disk with
a 2MB on-disk cache and 8.5ms average seek time. The
Solaris machine is a multiprocessor with two 450MHz
UltraSPARC processors, 1GB of RAM, and a RAID-1
mirror built on two 9GB SCSI disks: one 10, 000RPM
drive with a 4MB buffer, and one 7200RPM disk with a

OS k-Race Parameters Attack Parameters Wins / Trials
k Randomized M C × N

Linux 2.6.8 100 No 201 400 22/100
Solaris 9 100 No 201 400 83/100
FreeBSD 4.10-PR2 100 No 201 200 100/100
Linux 2.6.8 100 Yes 201 400 19/100
Solaris 9 100 Yes 201 1200 77/100
FreeBSD 4.10-PR2 100 Yes 201 200 88/100
Linux 2.6.8 1000 No 50 7000 83/100

Table 3: Attack success rates against the k-Race algorithm. k is the k-Race security parameter, M is the number of
maze directories used for the attack, C × N is the total number of directories in each maze. We used grep to flush
the filesystem cache before each trial. The first three experiments show that our maze attack works on several versions
of Unix and scales to large values of k by using more mazes. The three experiments against the randomized k-Race
algorithm show that our system call distinguishers are effective, and that our attack is insensitive to the ordering of the
victim’s calls to access(2), open(2), and fstat(2). The last experiment with k = 1000 shows that by re-using mazes we
can even attack extremely large values of k.

2MB buffer. The Linux machine used the ext3 filesys-
tem, while the Solaris and FreeBSD machine each used
ufs. Table 2 summarizes the configuration and capa-
bilities of each machine and its operating system. Our
results are given in Table 3, and show that, even with
k = 100, we can defeat the k-Race algorithm easily on a
variety of systems. For example, we were able to win 83

out of 100 trials on Solaris, and 100 out of 100 trials on
FreeBSD.

We stop short of performing an exhaustive analysis of
how individual factors such as memory size, hard drive
model, and operating system affect the success of our
attack. Our goal is simply to show that the attack is suc-
cessful under a broad sampling of realistic hardware and
software characteristics, which is sufficient evidence that
the k-Race defense must not be used in practice.

Extensions. Our attack avoids the filesystem cache by
using a separate maze for each of the victim’s system
calls, but we can re-use mazes for extremely large val-
ues of k. As shown in Table 2, large mazes can consume
over 300MB of disk space on some operating systems.
A machine with, say, 1GB of RAM can only cache 3

of these mazes, so after the victim performs 4 system
calls, the operating system will have flushed many of the
cache entries for directories in the first maze. The at-
tacker can therefore safely reuse the first maze. In gen-
eral, the adversary can break the k-Race defense using
extremely large k by creating as many mazes as neces-
sary to fill the filesystem cache and then cycling among
these mazes during the attack. We used this technique to
attack k-Race with k = 1000 on Linux 2.6, and found
that with 50 mazes of sizes 28MB each, we can break
the k-Race defense 83 times out of 100. (We used mazes

smaller than the maximal size because, even with this
size of maze, a single trial was taking over 5 minutes.)

If the I/O amplification methods described above are
not sufficient to enable the attacker to win races handily,
she can create thousands of dummy files in each direc-
tory of each chain. This method of slowing down name
resolution was previously suggested by Mazières and
Kaashoek [5]. These dummy entries will force the ker-
nel to read even more data from disk while performing
name resolution for each of the victim’s system calls. As
mentioned above, resolving a filename through a maze
may require reading hundreds of megabytes of data from
disk. By adding dummy entries in each chain directory,
an attacker can force the kernel to read gigabytes of data
from disk. We did not implement this extension because
the basic mazes were sufficient to attack every system we
tested.

In summary, we have shown a practical attack against
the k-Race defense using extremely high values for the
security parameter k and on a variety of Unix operating
systems.

6 A Randomized k-Race Algorithm

Dean and Hu’s defense performs a deterministic se-
quence of access(2) and open(2) system calls, and the
attack in Section 4 exploits that by deterministically
switching between a publicly accessible file and the tar-
get file. This suggests a potential countermeasure to our
attack: in each iteration of strengthening, the victim ran-
domly chooses to perform either an access(2) or open(2)
call. Now our attack will fail unless it can determine
the victim’s sequence of system calls. We next introduce
system call distinguishers to overcome this obstacle.

Maze 0

Maze 1

Maze 2

Maze 3

Maze 4

activemaze

relative link

target

public

secret

relative link

relative link to public file

relative link to secret file

relative link

relative link from exit

relative link from exit

relative link from exit

relative link from exit

relative link from exit

Figure 9: Malicious directory structure for attacking the
randomized k-Race defense. The exit links in each
maze point to the symbolic link target and the attacker
points target to the public or protected file depending
on the victim’s current system call.

7 Attack on Randomized k-Race

Recall that our attack program gains access to the CPU
while the victim is in the middle of executing one of its
system calls, so it is impossible for the adversary to pre-
dict the victim’s next system call. Instead, we describe
methods for determining the victim’s current system call
and reacting appropriately.

Distinguishing access(2) and open(2) calls is surpris-
ingly easy on most Unix operating systems. In Solaris 9,
any process can read the current system call number of
any other process from /proc/pid/psinfo. Linux
and FreeBSD do not export the system call numbers of
processes, but we can exploit a side effect of their imple-
mentations of the access(2) system call. Recall that ac-
cess(2) enables a setuid-root process to determine if the
invoking user can access a certain file. When a setuid-
root process runs, the invoking user’s ID is stored in the
processes real user ID, and its effective user ID is set to
0, giving it root privileges. FreeBSD implements the ac-
cess(2) system call by copying the process’s real user ID
to its effective user ID, resolving the given filename and
performing permission checks using the effective user
ID, and then restoring the effective user ID to its original
value. Every process’s real and effective user IDs can be
read from /proc/pid/status on FreeBSD, so an at-

for i = 1 to 2k + 1

save atime(activemaze/sentry)
while atime(activemaze/sentry) unchanged

sleep
distinguish victim’s current system call
toggle target symlink between secret and

public to match victim’s system call
link activemaze to mazei

Figure 10: Attacker’s algorithm to defeat the k-
Race scheme after setting up the directory structure
depicted in Figure 9. The victim opens the file
activemaze/sentry/lnk/lnk/.../lnk.

tacker can determine whether the victim is currently call-
ing access(2) or open(2) by simply checking the victim’s
user IDs: if the victim’s effective and real user IDs are
equal, then it is calling access(2), otherwise it is calling
open(2). Linux implements access(2) in a similar way,
but Linux has a notion of a process “filesystem user ID”
(fsuid) that is used in all filesystem-related permission
checks. The Linux access(2) system call copies the pro-
cess’s real user ID to its filesystem user ID instead of its
effective user ID, but the attacker can still use the same
idea. She simply checks whether the victim’s filesystem
ID is equal to its real user ID. We have tested these ac-
cess(2)/open(2) distinguishers on Solaris 9, Linux 2.6,
and FreeBSD, and they all work. Based on our reading
of OpenBSD’s source code, its access(2) implementation
behaves just like FreeBSD’s, so this attack should work
on OpenBSD, as well.

Once the adversary has determined which system call
the victim is executing, she must change the symbolic
links in the maze to ensure the victim’s system call suc-
ceeds. Toggling activemaze will not work because,
by the time the attacker gets to run, the victim has al-
ready resolved that symbolic link. The attacker needs to
switch a symbolic link that the victim has not processed
yet. To support this operation, we set up the mazes as
shown in Figure 9, and the attacker toggles the sym-
bolic link, target, between the public and protected
files based on the victim’s current system call. Figure 10
shows the attacker’s new algorithm. When the victim
makes a system call, it is forced to sleep on I/O while re-
solving the filename. The attacker then wakes up, deter-
mines the victim’s current system call, switches target
so the victim’s system call will succeed, and advances
activemaze to point to the next maze. When the vic-
tim resumes, it finishes resolving the filename using the
new value for target, so the system call succeeds.

We tested this attack on Linux, Solaris, and FreeBSD.
Table 3 shows our results. Against the randomized k-
Race algorithm using k = 100 our attack won at least

Linux 2.6 FreeBSD 4.10-PR2 Solaris 9
1.7 GHz Athlon 1.3GHZ P-IV 450MHZ Ultra

access(2)/open(2) 3 µ sec 8 µ sec 253 µ sec
k-Race, k = 7 30 µ sec 91 µ sec 2210 µ sec
k-Race, k = 100 393 µ sec 1190 µ sec 27600 µ sec
Fork-Open 135 µ sec 582 µ sec 5750 µ sec

Table 4: Running times for different access(2)/open(2) techniques on different operating systems. We measured the
elapsed cycle count for each call and repeated each measurement 1000 times to compute the average speed. The
measurements for the k-Race algorithm do not include randomized waits, so these results are a lower bound on the
running time of k-Race.

19% of the trials and up to 88%. From this, we conclude
that the randomized k-Race algorithm is not secure. Note
also that by using system call distinguishers our attack on
the randomized algorithm performs about as well as the
attack on the deterministic algorithm.

The three techniques we have developed in this paper
— mazes, synchronization primitives, and system call
distinguishers — are general tools that adversaries can
use to exploit a variety of Unix filesystem races. For
this reason, we believe that race condition exploits are
real threats that should be treated with the same level
of care as other software vulnerabilities, such as buffer
overflows and format string bugs.

8 Other Defenses

Fork. As mentioned by Dean and Hu, there is at least
one secure, cross-platform option to solve this problem.
A program can eschew the use of the access(2) system
call and rely on the operating system to enforce the per-
mission checks when it opens the file. When the program
needs to open an invoker-accessible file, it can fork a new
process that then uses the setuid(2) call to drop the setuid
privilege and run only with the rights of the invoker. The
new process can then call open(2) and the operating sys-
tem will enforce that the program’s invoker has rights
to open the file. Once the forked process successfully
obtains a file descriptor, it can use standard Unix IPC
mechanisms to pass the file descriptor back to its parent
process. The parent process can use the file descriptor as
normal.

We have implemented this forking technique and
tested it on Linux 2.4, 2.6, Solaris 9.1, and
FreeBSD 4.10-PR2 [11]. Our fork(2)/open(2) function
has the same interface as open(2), taking a string path-
name and a flags parameter. It returns a file descriptor
but ensures that the program’s invoker (determined by
getuid(2)) can access the file. We envision that the code
can be placed in a library, such as libc.

One drawback with this technique is that it is much
slower than the k-Race scheme using the recommended

parameter k = 7, as can be seen in Table 4. However,
we have shown that k-Race is insecure even up to k =

100, and our experiments show that the fork(2)/open(2)
solution is faster than k-Race with k = 100.

Kernel solutions. Forking a process to open a file is a
heavy-weight solution, and a little help from the kernel
could go a long way. For example, if temporarily drop-
ping privileges were portable across different versions of
Unix, then a setuid-root program could simply temporar-
ily drop privileges, open the file, and restore privileges.
Privilege management in Unix is a notorious mess [2],
but any progress on that problem would translate into im-
mediate improvements here. Alternatively, OS kernels
can add a new flag, O RUID, to the set of flags for the
open call, as suggested by Dean and Hu.

Until privilege management or the O RUID flag be-
come standardized, the C library can emulate these fea-
tures to create a simple portable interface. For exam-
ple, the C library could introduce a new set of user id
management interfaces that hide all the non-portable de-
tails of each OS implementation. Similarly, the C library
could emulate O RUID by temporarily dropping privi-
leges while performing the open(2) call.

Any solution like these would enable setuid-root pro-
grams to open files with the same security guarantees as
the fork(2)/open(2) solution, but with the performance
of a simple call to open(2). This would be a significant
performance benefit, as shown in Table 4, and would be
clearly superior to Dean and Hu’s defense in both secu-
rity and speed.

9 Related Work

A number of projects use static analysis techniques to
find race conditions in C source code. Bishop and Dilger
gave one of the earliest formal descriptions of the ac-
cess(2)/open(2) race condition and used this formalism
to characterize when the race condition occurs [1]. Us-
ing this characterization, they developed a static analysis
tool that finds TOCTTOU races by looking for sequences

of file system operations that use lexically identical argu-
ments. Because their tool performs no data flow analy-
sis, it may fail to report some real vulnerabilities. Chen
et al. used software model checking to check temporal
safety properties in eight common Unix applications [3].
Their tool, MOPS, is able to detect stat(2)/open(2) races.
Later work with MOPS by Schwarz et al. checked all of
Red Hat 9 and found 41 filesystem TOCTTOU bugs [10].
MOPS has similar limitations to Bishop and Dilger’s tool
because it also doesn’t perform data flow analysis.

Static analysis techniques may generate many false
positives, requiring the developer to sift through numer-
ous warnings to find the actual bugs. Dynamic tech-
niques aim to reduce the number of false positives by
observing runtime program behavior and looking for
TOCTTOU race conditions. Tsyrklevich and Yee de-
tected races by looking for “pseudo-transactions”, i.e.
pairs of system calls that are prone to TOCTTOU file
race vulnerabilities [12]. Upon detecting a race in a run-
ning system, their tool asks the user for a course of ac-
tion. Ko and Redmond used a similar approach to look
for dangerous sequences of system calls [7]. They wrote
a kernel extension that looks for interfering system calls,
i.e. system calls that changes the outcome of another
group of system calls. For example, their scheme would
detect our attack because the attacker’s unlink(2) calls in-
terfere with the victim’s calls to open(2) and access(2).
Cowan et al developed RaceGuard, a kernel enhance-
ment that prevents temporary file creation race condi-
tions by detecting changes to the file system between
calls to stat(2) and open(2). Related to Tsyrklevich and
Yee’s pseudo-transaction notion, the QuickSilver operat-
ing system adds support for filesystem transactions [9].
A process could prevent TOCTTOU races by enclosing
dependent system calls in one transaction. Mazières and
Kaashoek give principles for designing an operating sys-
tem to avoid TOCTTOU bugs [5]. They note that an at-
tacker can create many files in a directory so that name
resolution slows down and hence easily win TOCTTOU
file races. Their solution encompasses a richer OS in-
terface to enable finer grain access controls and greater
control over name resolution.

10 Conclusion

We described a practical attack on the k-Race algorithm,
developed a randomized version of k-Race, and broke
that scheme, too. The latter attack shows that our system
call distinguishers are a powerful attack tool and that our
attack is insensitive to the exact sequence of system calls
performed by the victim. We therefore reaffirm the con-
ventional wisdom that access(2) should never be used in
secure programs. The tools we created as part of this
attack — mazes, system call synchronizers, and system

call distinguishers — are applicable to a wide variety of
Unix filesystem races. We discussed several alternative
solutions to access(2)/open(2) races that offer determin-
istic security guarantees.

Availability

The source code for our k-Race implementation and at-
tack software is available at http://nikita.ca/
research/races.tar.gz.

Acknowledgements

We would like to thank David Molnar and the anony-
mous reviewers for their insightful comments and our
shepherd, Eu-Jin Goh, for his help in preparing the final
version of this paper. This work was supported in part by
the NSF under grants CCR-0093337 and CCF-0430585
and by the US Postal Service.

References

[1] Matt Bishop and Michael Dilger. Checking for race
conditions in file accesses. Computing Systems,
9(2):131–152, Spring 1996.

[2] Hao Chen, Drew Dean, and David Wagner. Setuid
demystified. In Proceedings of the 11th Usenix Se-
curity Symposium, pages 171–190, August 2002.

[3] Hao Chen, Drew Dean, and David Wagner. Model
checking one million lines of C code. In Proceed-
ings of the 11th Annual Network and Distributed
System Security Symposium (NDSS), pages 171–
185, February 2004.

[4] Drew Dean and Alan Hu. Fixing races for fun and
profit: How to use access(2). In Proceedings of
13th Usenix Security Symposium, pages 195 – 206,
August 2004.

[5] David Mazières and M. Frans Kaashoek. Secure
applications need flexible operating systems. In
Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), pages 56–61, 1997.

[6] Norm Hardy. The confused deputy: (or why capa-
bilities might have been invented). ACM SIGOPS
Operating Systems Review, 22(4):36–38, October
1988.

[7] Calvin Ko and Timothy Redmond. Noninterference
and intrusion detection. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, pages
177–187, May 2002.

[8] W. S. McPhee. Operating system integrity in
OS/VS2. IBM Systems Journal, 13(3):230–252,
1974.

[9] Frank Schmuck and Jim Wyllie. Experience with
transactions in QuickSilver. In Proceedings of the
13th ACM Symposium on Operating System Princi-
ples, pages 239–253, October 1991.

[10] Benjamin Schwarz, Hao Chen, David Wagner, Ge-
off Morrison, Jacob West, Jeremy Lin, and Wei Tu.
Model checking an entire Linux distribution for se-
curity violations. Technical Report UCB//CSD-05-
1384, UC Berkeley, April 2005.

[11] W. Richard Stevens. Unix Network Programming,
chapter 14.7: Passing Descriptors. Prentice Hall
PTR, 1997.

[12] Eugene Tsyrklevich and Bennet Yee. Dynamic de-
tection and prevention of race conditions in file ac-
cesses. In Proceedings of the 12th Usenix Security
Symposium, pages 243–255, August 2003.

